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Abstract This study uses an analytically known expression for the relative motion
wave function �RM (r) for the Crandall et al. two-electron model atom with harmonic
confinement plus inverse square law interparticle repulsion. This wavefunction is then
employed to calculate the kinetic energy density for chosen values of both the harmonic
force constant and the strength of the interaction coupling. Further consideration is
then given to the Gál–March energy density functional which is shown to depend on
the von Weizsäcker kinetic energy density in a fundamental manner.

Keywords Exactly soluble two-electron atomic model · Energy functional ·
von Weizsäcker kinetic energy

Crandall, Whitnell and Bettega [1] (CWB) solved analytically the two-electron
harmonically confined model atom with inverse square interparticle repulsion u(r12) =
λ/r2

12 for the ground state wave function �( �r1, �r2). Their result was recently utilized
by Capuzzi, March and Tosi [2] (CMT) to extract the relative motion (RM) wave
function from the product form �C M ( �r1+ �r2

2 )�RM (r12) of the CWB �( �r1, �r2) as

�RM (r) =
(

mω

2h̄

)α/2+3/4 (
2

�(α + 3/2)

)1/2

r (α+1)exp
(
−mωr2/4h̄

)
(1)

D. Geldof (B) · C. Van Alsenoy
Chemistry Department, University of Antwerp, Antwerp, Belgium
e-mail: davy.geldof@ua.ac.be

N. H. March
Physics Department, University of Antwerp, Antwerp, Belgium

N. H. March
Oxford University, Oxford, England

123



1562 J Math Chem (2013) 51:1561–1568

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  1  2  3  4  5

de
ns

ity

r

Fig. 1 Density as a function of r (in a.u.) for α = 0 and ω = 1
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Fig. 2 Density as a function of r (in a.u.) for α = 3 and ω = 1

as well as the resulting density

ρ(r) = exp
(−2mωr2/h̄

)
π3/24α�(α + 3/2)

mω

h̄r

∞∫
0

exp(−y2/2)y2α+1sinh(r y/a)dy (2)

In Eq. (1) the harmonic confinement potential is 1
2 mω2r2 while the quantity α

subsumes the strength λ of the interparticle repulsion u(r12) = λ/r2
12 through the

definition [1]

α =
[(

1 + 4λm

h̄2

)1/2

− 1

]
/2 (3)
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Fig. 3 Density as a function of r (in a.u.) for α = 6 and ω = 1
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Fig. 4 f(r), defined in Eq. 11, as a function of r (in a.u.) for α = 0 and ω = 1

We next recall the result of Holas, Howard and March [3] (HHM) that one form of
the correlated kinetic energy density t (r) for the CWB model and indeed for general
u(r12) is given by

T =
∫

t (r)d�r (4)

where t (r) = tC M (r) + tRM (r): the separate terms having forms tC M (r) =
(h̄2/4m)[ d

dr �C M (r)]2 and tRM (r) = (h̄2/m)[ d
dr �RM (r)]2. �C M is Gaussian and

known for all u(r12), the total kinetic energy contribution being explicitly TC M =∫
tC M (r)d�r = 3h̄ω/4, independent of the interaction between the particles.
Using Eq. (2) above for ρ(r), we display in Figs. 1, 2 and 3 the density for α equal

to 0, 3 and 6 and ω equal to 1.
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Fig. 5 f(r), defined in Eq. 11, as a function of r (in a.u.) for α = 3 and ω = 1
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Fig. 6 f(r), defined in Eq. 11, as a function of r (in a.u.) for α = 6 and ω = 1

Turning to the correlated potential energy contribution we can appeal to the result of
Gál and March [4] for the functional F[ρ] defined from the energy functional EV [ρ],
with V denoting the external potential, by

EV [ρ] = F[ρ] +
∫

ρ(r)V (r)d�r (5)

The desired interparticle correlated potential energy is then simply F − T where T
has already been treated in Eq. (4) and immediately below that equation. For the
CWB model which is the focus of the present article, Gál et al. [4] write F explicitly
as [Eq. (20) of [4]]
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Fig. 7 Plot of the two terms separately of f(r) as a function of r (in a.u.) and ω = 1. a 1st term of f(r)
(α = 0). b 2nd term of f(r) (α = 0). c 1st term of f(r) (α = 3). d 2nd term of f(r) (α = 3). e 1st term of f(r)
(α = 6). f 2nd term of f(r) (α = 6)

FCW B = h̄2

16m

∫ (
ρ′2(r)
ρ(r)

+ r
2

ρ′(r)ρ′′(r)
ρ(r)

)
d�r(

1 + 27
4(α+3)

− 3
4(α+3)

∫
r2 ρ′2(r)

ρ(r)
d�r∫

ρ(r)d�r

) (6)

Rewriting this equation as

16m

h̄2 FCW B = N
D (7)
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Fig. 8 Denominator D, defined in Eq. 12, as a function of α for ω = 1

and defining τ(r) = ρ′2(r)/ρ(r) we can now remove the term involving ρ′ρ′′/ρ in
Eq. (5) by differentiating τ(r) in the form ρ(r)τ (r) = ρ′2(r), to get

2ρ′(r)ρ′′(r)

ρ(r)
= τ ′(r) + ρ′(r)

ρ(r)
τ (r) (8)

Then we find for the numerator N in Eq. (7) above:

N =
∫

τ(r)d�r + 1

4

∫
rτ ′(r)d�r + 1

4

∫
r
τ(r)ρ′(r)

ρ(r)
d�r (9)

Integrating the second term on the RHS of Eq. (9) ‘by parts’ using spherical symmetry
as an intermediate step we find

N =
∫

f (r) d�r (10)

with f (r) defined as

f (r) = 1

4
τ(r) + 1

4
r
τ(r)ρ′(r)

ρ(r)
(11)

We display f (r) derived in Eq. (11), using the densities plotted in Figs. 1, 2 and
3, in Figs. 4, 5 and 6. It may be of interest in the future to know how f (r) is built up
from the two terms on the RHS of Eq. (11), and these are therefore plotted separately
in Fig. 7.
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Fig. 9 f(r)/D(α) as a function of r (in a.u.) for α = 0 and ω = 1
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Fig. 10 f(r)/D(α) as a function of r (in a.u.) for α = 3 and ω = 1

For the denominator D, using the definition for τ(r) as well as using the fact that∫
ρ(r)d�r = 2 we arrive at the result from Eqs. (6) and (7) that

D = 1 + 27

4(α + 3)
− 3

8(α + 3)

∫
r2τ(r)d�r (12)

This is plotted as a function of α in Fig. 8, for ω equal to 1.
In terms of these expressions, FCW B can be written as:

16m

h̄2 FCW B =
∫

f (r)

D d�r (13)
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Fig. 11 f(r)/D(α) as a function of r (in a.u.) for α = 6 and ω = 1

and the integrand f (r)
D is displayed in Figs. 9, 10 and 11, again for the three values

of α.
To conclude, we have here calculated the DFT quantity F[ρ] for the model atom

of Crandall et al. [1] This functional was given first by Gál and March [4]. Here, we
have defined a differential form of F , and have displayed numerically the results of
inserting the exact ground-state density ρ(r) in the integral form given by Capuzzi
et al. [2], for a particular choice of the external potential but for different strengths
of the interparticle interaction. We have shown explicitly the central role played by
the von Weizsäcker kinetic energy in determining F[ρ]. It would, of course, be of
considerable interest for the future if some aspects of the differentiral form of the
functional F[ρ], discussed in detail here for the Crandall atom, could be extended to
apply, at least approximately, to the non-relativistic ground-state of the He-like ions
with nuclear charge Ze.
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